+86 13541016684Mon. - Fri. 10:00-22:00

如何在AWS云平台上构建千万级用户应用

如何在AWS云平台上构建千万级用户应用

如何在AWS云平台上构建千万级用户应用

AWS服务概述

高扩展性应用建设并非把应用直接迁移到云平台上就能轻易实现,相反我们需要根据云平台的特性进行专门的设计,这包括选择合适的云服务类型并进行良好 的应用架构设计。对于希望基于AWS构建千万级用户应用的开发者而言,不仅需要对区域(Region)、可用区(AZ)和边缘站点等基础设施的分布有所了 解,更需要了解不同的AWS服务各自的特点和最佳实践。

AWS的服务可大致按照其所处层面分为三类,从下到上依次是基础服务层、应用服务层、部署和管理层。基础服务层也有两层,下层是计算(EC2、 WorkSpaces)、存储(S3、EBS、Glacier、Storage Gateway)、网络(VPC、Direct Connect、ELB、Route53),上层是数据库(RDS、Dynamo、ElastiCache、RedShift)、数据分析(EMR、 Data Pipeline、Kinesis)、内容分发(CloudFront)。应用服务层主要是把邮件服务、消息队列服务等通用的功能单独抽离出来。部署和管 理层则有用于监控的CloudWatch,用于部署运维工作的BeanStalk、OpsWorks、CloudFormation和 CloudTrail等,以及IAM、Federation等身份管理服务。

单机到多实例

传统的单机服务,到AWS上面就是跑在一个EC2实例上,这个实例上跟以前的服务器一样上面安装所有的Web应用、数据库等,搭配一个EIP,外部 用Route53做DNS。遇到瓶颈后,简单的扩展就是将小的实例换成大的实例,比如small换成2xlarge、8xlarge,服务结构不变,可以 快速实现,但是最终都会遇到极限。

到了这一步,就要从单实例服务变成多实例。这一步骤涉及到Web实例和数据库实例的拆分,数据库可以开始考虑选择SQL或者NoSQL。SQL大家 比较熟悉,优点很明显,缺点主要在规模变大之后呈现,不过一般对于百万级用户量内的应用,SQL是能够满足需求的;但如果数据量增长速度很快,数据是非结 构化或者半结构化的,应用要求的延时低、写入的速度要求快,那考虑NoSQL会更合适一些。

几百个用户的情况,一个RDS实例+一个Web实例即可满足需求,前端直接用一个EIP,即单机的情况;用户上千的情况,建议启动两个RDS实例+Web实例并将实例部署在不同的可用区,前端用ELB做负载均衡。

对于百万级以下用户的规模,每一个可用区内会有多个Web实例和RDS实例组成的集群,其中Active RDS实例和Standby RDS实例要放在不同的可用区,其他RDS实例均为只读。

到了这个规模之后,再要往上扩展到百万级,就需要改变部分工作负载的设计方式了。

改变部分工作负载的设计方式

第一步可以引入S3和CloudFront。把静态内容从Web实例中迁移到S3上,适合的文件类型包括静态数据(CSS、JS、图片、视频)、日 志、备份等。S3具备11个9的持久性,本身是海量存储,可以支撑大量的并发访问,而且成本很低。CDN方面,CloudFront以Web Service接口的方式提供服务,支持动态和静态内容、流式视频,支持根域,支持客户化SSL证书。

第二步可以引入ElastiCache和DynamoDB。ElastiCache是托管的Memcached和Redis服务,API是一样的, 两者都是非常快的缓存服务(毫秒级别),区别在于Memcached使用一个AZ,Redis可以跨AZ复制。DynamoDB是NoSQL服务,后台存 储基于SSD,平均延时在毫秒级别。

这时候我们可以开始考虑弹性的问题,即应用的自动扩展。弹性的实现有四个前提:

• 完善的、基于指标的监控体系

• 自动化构建

• 自动化部署

• 集中化日志管理

在AWS上实现自动构建部署,可以选择Beanstalk、OpsWorks或CloudFormation,也可以完全自己写脚本配合定制AMI 来实现。Elastic Beanstalk是全自动化的,基于容器实现,适合常规的Web应用;OpsWorks是半自动化的,适合较为复杂的应用开发流程,可以对资源配给、配 置管理、应用部署、软件升级、监控、身份控制进行定制化;CloudFormation是基于模板的管理模式,可定制的范围更大。

如果以上都做到,那么一个百万级用户量的应用基本上可以比较好的管理起来。进一步到千万级用户量的规模,我们需要更多的引入面向服务的架构设计,即SOA。

SOA、SOA、SOA

SOA在04、05年讲得比较多,到现在基本上已经是大家都认可的做法,非常适合大规模应用的场景,其核心在于松耦合。

比如消息队列服务SQS,加在模块A和模块B之间,这样即使模块A宕掉了,模块B也仍然可以正常运行一段时间。美国大选网站就是采用了这样的思路,在SQL实例压力大的时候把实例关掉,换上一个更大的实例,因为前面有SQS顶着才可以这样做。

而AWS上的通知服务(SNS)、邮件服务(SES),也建议大家多多采用,而不要自己搭建Web实例来做,因为此类服务在处理海量请求方面的能力要远远超过一般的实现。

千万级规模对数据库的性能挑战是很大的,对于SQL,联邦(federation)、分片(sharding)都是常用的方法,将“热”表、快速写 数据迁移到NoSQL也是一种思路。应用的性能挑战方面,重点则在于即时获得反馈(完善实时的监控+报警),以及持续的调优各个模块。

参考资料

• AWS官网

• AWS参考架构

• AWS白皮书

• AWS英文博客

• 在线动手实验